Boas, Chapter 2, section 4 Supplementary Notes:

The scalar component of any vector \mathbf{R} in an arbitrary direction, D, is $R \cdot \mathbf{u}_{\mathrm{D}}$, where \mathbf{u}_{D} is a unit vector in the direction D .

We now define directional angles and directional cosines, as shown in the adjacent diagram.
α, β and γ are directional angles for the vector D. That is, they are the angles between the unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}, and the vector \mathbf{D}.

Define unit vector \mathbf{u}_{D} as $\mathbf{u}_{\mathrm{D}}=\mathrm{D} /|\mathrm{D}|=\mathrm{D} / \mathrm{D}$.
Then

$$
\mathbf{u}_{D}=\left[D_{x} \mathbf{i}+D_{y} \mathbf{j}+D_{y} \mathbf{k}\right] / D=u_{x} \mathbf{i}+u_{y} \mathbf{j}+u_{z} \mathbf{k}
$$

where $u_{x}=D_{x} / D, u_{y}=D_{y} / D$ and $u_{z}=D_{z} / D$. These are operational equations, that is, they are how we actually compute the unit vector componets.

Now u_{x}, u_{y} and u_{z} are actually the directional cosines of D.
Proof: $\mathbf{u}_{\mathrm{D}}=\left[\mathrm{D}_{x} \mathbf{i}+\mathrm{D}_{\mathrm{y}} \mathbf{j}+\mathrm{D}_{\mathrm{z}} \mathbf{k}\right] / \mathrm{D}=\frac{\mathrm{Dx}}{D} \boldsymbol{i}+\frac{\mathrm{Dy}}{D} \boldsymbol{j}+\frac{\mathrm{Dz}}{D} \boldsymbol{k}=\frac{\mathrm{D} \cdot \mathbf{i}}{D} \boldsymbol{i}+\frac{\mathrm{D} \cdot \boldsymbol{j}}{D} \boldsymbol{j}+\frac{\mathrm{D} \cdot \mathbf{k}}{D} \boldsymbol{k}$

$$
\mathbf{u}_{\mathrm{D}}=\frac{\mathrm{D} \cos \alpha}{D} \boldsymbol{i}+\frac{\mathrm{D} \cos \beta}{D} \boldsymbol{j}+\frac{\mathrm{D} \cos \gamma}{D} \boldsymbol{k}
$$

Example Find l, m, and n for the vector $A=5 i+3 j-2 k$

$$
\begin{aligned}
& A=\sqrt{ }=\sqrt{38}=6.164 \\
& \frac{s}{\sqrt{38}}=0.811 \\
& \frac{3}{38}=0.487 \\
& \frac{-2}{\sqrt{38}}=-0.324
\end{aligned}
$$

Hence, $\mathbf{u}_{A}=0.8111+0.487 \mathbf{j}-0.324 \mathbf{k}$

Vectors in 3 dimensions

$$
v=v_{x}+v_{y}+v_{z}
$$

For spherical coordinates, $上 \theta, \varphi$.
$\theta=\gamma$ but $\varphi \neq \alpha$ or β.

$$
\begin{aligned}
\left|V_{x}\right|=V_{x} & =V \cdot \Delta=V \cot \alpha \quad V_{x}=V_{x} i \\
V_{y} & =W \cdot g=V \cot \beta \quad V_{y}=v_{y} \dot{0} \\
V_{z} & =v \cdot k=V \cot y \quad v_{g}=V_{g} k
\end{aligned}
$$

In terms of spherical coordinate angles:

$$
\begin{aligned}
& V_{x}=(V \sin \theta) \text { cod } \phi \\
& V_{y}=(V \sin \theta) \text { sin } \&\left\{\begin{array}{l}
\text { Verify the validity of these equations } \\
\text { from the geometry in the diagram. To } \\
\text { find the component of any vector } \\
\text { along any direction, multiply that } \\
\text { vector by the cosine of the angle } \\
\text { between the vector and the direction. } \\
\text { For example, the cosine of the angle } \\
\text { between Vine and the y-axis is the }
\end{array}\right.
\end{aligned}
$$ cosine of $90-\phi$, which is sine ϕ.

Find $V_{x^{\prime}}, V_{y^{\prime}}, V_{z^{\prime}}$, where the prime coordinate system is rotated about z-axis by angle ρ. Now $V^{\prime}=R V$ where R is the rotational matrix, which we now find.

$$
\begin{aligned}
& V_{x^{\prime}}=V_{x} \cos \rho+V_{y} \sin \rho+V_{z} \cdot 0 \\
& V_{y}^{\prime}=-V_{x} \sin \rho+V_{y} \cos \rho+V_{z} \cdot 0 \\
& V_{z}^{\prime}=V_{x} \cdot 0+V_{y} \cdot 0+V_{z} \cdot 1
\end{aligned}
$$

The rotation leaves V_{z} invariant. Hence, in matrix form:

$$
V^{\prime}=\left(\begin{array}{l}
V_{x}^{\prime} \\
V_{y}^{\prime} \\
V_{z^{\prime}}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \rho & \sin \rho & 0 \\
-\sin \rho & \cos \rho & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
V_{x} \\
V_{y}^{\prime} \\
V_{z}
\end{array}\right)
$$

Invoking the concept in the box above for a rotation, we may write:

$$
V_{x_{k}^{\prime}}=\sum_{i=1}^{n} V_{x_{i}} \operatorname{cec} \delta_{i} \quad \text { where } n \text { is the number of dimensions and the } \delta_{i} \text { are the angles }
$$

between the vector componets, $V_{x_{i}}$, and x^{\prime}-axis. Actually, the values $V_{x_{i}}$ cot δ_{i} are the dot products of $V_{x_{i}}$ and a unit vector along $V_{x_{k}^{\prime}}$.
The angles δ_{i} are not the angles $\alpha, \beta, \& \gamma$, but are angles between the axes.
E.G. For $k=1 \quad x_{h}^{\prime}=x$

Hence: $x_{1}=x, x_{2}=y, x_{3}=z$.

$$
V_{x^{\prime}}=V_{x} \cos {\underset{\delta}{\delta_{1}}}_{\cos }+V_{y} \cos \underbrace{(90-\rho)}_{\delta_{2}}+V_{z} \cos \underbrace{\left(90^{\circ}\right)}_{\delta_{3}}=V_{x} \cot \rho+V_{y} \sin \rho+V_{j} \cdot 0
$$

Solve the following set of linear equations by matrix methods:

$$
\begin{array}{r}
2 x+3 y-z=-3 \\
x+y+z=2 \\
-x+y+2 z=-2
\end{array}
$$

First find $|A|=\operatorname{det} A$
\% row 1 by 2

$$
\operatorname{det} A=\left|\begin{array}{ccc}
2^{\text {replace row }} & 3 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 2
\end{array}\right|=\left|\begin{array}{ccc}
2
\end{array}\right| \begin{array}{ccc}
2 & 3 & -1 \\
3 & 4 & 0 \\
-1 & 1 & 2
\end{array}\left|=\left|\begin{array}{ccc}
\text { and add to to row } 3 \\
2 & 3 & -1 \\
3 & 4 & 0 \\
3 & 7 & 0
\end{array}\right|\right.
$$

then $A=-1(3.7-4.3)=-9$, (expanded about $\left.a_{13}\right)$
Now find $\hat{A}=$ adjoint of $A=C^{\top}$. First find cotactor mistrix C :

$$
\begin{aligned}
& C=\left(\begin{array}{ccc}
1 \cdot 2-(+1 \cdot 1) & -[(2 \cdot 1)-(+1)(-1)] & 1 \cdot 1-(-1 \cdot 1) \\
-[2 \cdot 3-(-1)(+1)] & (2 \cdot 2)-(-1)(-1) & -[(2)(1)-(3)(-1)] \\
(3)(1)-(-1)(1) & -[(2)(1)-(-1)(+1) & (2)(1)-(3)(1)
\end{array}\right)=\left(\begin{array}{ll}
(2-1)-(2+1)(1+1) \\
-[6+1] & (4-1)-(2+3) \\
(3+1)-[2+1] & (2-3)
\end{array}\right) \\
& C=\left(\begin{array}{ccc}
1 & -3 & 2 \\
-7 & 3 & -5 \\
4 & -3 & -1
\end{array}\right) \quad C^{\top}=\hat{A}=\left(\begin{array}{ccc}
1 & -7 & 4 \\
-3 & 3 & -3 \\
2 & -5 & -1
\end{array}\right) \quad A^{-1}=-\frac{1}{9} C^{\top} \\
& A^{-1} k=r \quad \underbrace{(-9)}_{|A|} r=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 & -7 & 4 \\
-3 & 3 & -3 \\
2 & -5 & -1
\end{array}\right)\left(\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right) \\
& r=-\frac{1}{9}\left(\begin{array}{c}
-3-14+8 \\
9+6-6 \\
-6-10-2
\end{array}\right)=-\frac{1}{9}\left(\begin{array}{c}
-9 \\
9 \\
-18
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

so $x=1 \quad y=-1 \quad \& \quad z=2$

Chapter 13, Section 5

Solve Laplace's Equation in cylindrical coordinates ρ, ∞, z.

$$
\begin{gather*}
\nabla^{2} \Phi=0 \\
\frac{\partial^{2} \Phi}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \Phi}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0 \tag{1}
\end{gather*}
$$

Try solution $\Phi=R(e) Q(\varphi) Z(z)$
substitute into (1):

$$
\begin{equation*}
Q Z \frac{d^{2} R}{d \rho^{2}}+\frac{Q Z}{\rho} \frac{d R}{d \rho}+\frac{R Z}{\rho^{2}} \frac{d^{2} Q}{d \varphi^{2}}+R Q \frac{d^{2} Z}{d z^{2}}=0 \tag{3}
\end{equation*}
$$

Divide thru by $R Q Z$:

$$
\frac{1}{R} \frac{d^{2} R}{d p^{2}}+\frac{1}{R p} \frac{d R}{d p}+\frac{1}{Q p^{2}} \frac{d^{2} Q}{d Q^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}=0 \quad \text { (4) }
$$

The last term is only a function of 3 and \therefore must be equal to some constant in order for the sum of $a^{\prime} l l$ terms to be zero regardless of z : $A+B(\xi)=0$ for fixed A but z be any value then $B(z)=\hbar^{2}$
Hence $\quad \frac{1}{R} \frac{d^{2} R}{d \rho^{2}}+\frac{1}{R \rho} \frac{d R}{d \rho}+\frac{1}{Q \rho^{2}} \frac{d^{2} Q}{d \varphi^{2}}+\hbar^{2}=0$
Now $\cdot / / \cdot \rho^{2}: \quad \frac{\rho^{2}}{R} \frac{d^{2} R}{d \rho^{2}}+\frac{\rho}{R} \frac{d R}{d \rho}+\frac{1}{Q} \frac{d^{2} Q}{d Q^{2}}+\hbar^{2} \rho^{2}=0$
Now the term $\frac{1}{Q} \frac{d^{2} Q}{d \varphi^{2}}$ is only a function of Q and must be equal to a constant $-v^{2}$
so:

$$
\frac{\rho^{2}}{R} \frac{d^{2} R}{d \rho^{2}}+\frac{\rho}{R} \frac{d R}{d \rho}-z^{2}+k^{2} \rho^{2}=0
$$

Now $\cdot / / \cdot R / P^{2}$:

$$
\begin{equation*}
\frac{d^{2} R}{d \rho^{2}}+\frac{1}{\rho} \frac{d R}{d \rho}+\left(k^{2}-\frac{v^{2}}{\rho^{2}}\right) R=0 \tag{8}
\end{equation*}
$$

Now change variables to $x=$ た ρ
Then $\quad \frac{d}{d \rho}=\frac{d}{d x} \frac{d x}{d \rho}=k \frac{d}{d x} \quad$ and $\quad \frac{d^{2}}{d \rho^{2}}=\hbar^{2} \frac{d^{2}}{d x^{2}}$
substitute into
(8):

$$
\begin{align*}
& k^{2} \frac{d^{2} R}{d x^{2}}+\frac{k}{x / k} \frac{d R}{d x}+\left(k^{2}-\frac{\nu^{2}}{x^{2} / k^{2}}\right) R=0 \tag{11}\\
& k^{2} \frac{d^{2} R}{d x^{2}}+\frac{k^{2}}{x} \frac{d R}{d x}+\left(k^{2}-\frac{\nu^{2} \hbar^{2}}{x^{2}}\right) R=0 \tag{12}
\end{align*}
$$

\div by k^{2} :

$$
\begin{equation*}
\frac{d^{2} R}{d x^{2}}+\frac{1}{x} \frac{d R}{d x}+\left(1-\frac{\nu^{2}}{x^{2}}\right) R=0 \tag{13}
\end{equation*}
$$

This is Bessel's Equation and the solutions are called Bessel Functions. Bessel's equation arises in physics when there is cylindrical symmetry such as in optics or the propagation of electromagnetic waves or fluid dynamics in pipes.

So the complete solution of Laplace's equation reduces to 3 ordinary differential equations:

$$
\begin{align*}
& \frac{d^{2} z}{d z^{2}}-\hbar^{2} z=0 \tag{14}\\
& \frac{d^{2} Q}{d \varphi^{2}}+\nu^{2} Q=0 \tag{15}
\end{align*}
$$

and equation (8) which transforms to Bessel's Equal. It can be show that the solution to (14) is

$$
z(z)=e^{ \pm \hbar_{z}}
$$

and the solution to (15) is:

$$
Q(\varphi)=e^{ \pm i \nu \varphi}=\cos n \varphi \pm i \sin \varphi
$$

This procedure for solving the $2^{\text {nd }}$ order partial differential equation is called "separation of variables."

Assume a solution is a power series

$$
\begin{equation*}
R(x)=x^{\nu} \sum_{j=0}^{\infty} a_{j} x^{j} \tag{18}
\end{equation*}
$$

In general, ν is not an integer; ν is called the order of the Bessel Function.
Let us simplify by assuming there is no φ deependence. Then $\nu=0$ and Bessel's equation becomes:

$$
\begin{align*}
& \frac{d^{2} R}{d x^{2}}+\frac{1}{x} \frac{d R}{d x}+R=0 \tag{19}\\
& x R^{\prime \prime}+R^{\prime}+x R=0 \tag{20}
\end{align*}
$$

or
So we try a solution $R=\sum_{\lambda} a_{\lambda} x^{\lambda}$ where we are using the index λ rather λ than j as in (18). Now substitute R into (zo) and carry out the differentiation to obtain

$$
\begin{align*}
& \sum_{\lambda}\left[x \lambda(\lambda-1) a_{\lambda} x^{\lambda-2}+a_{\lambda} \lambda x^{\lambda-1}+x a_{\lambda} x^{\lambda}\right]=0 \tag{21}\\
& \sum_{\lambda}\left[x \lambda^{2} a_{\lambda} x^{\lambda-2}-x \lambda a_{\lambda} x^{\lambda-2}+a_{\lambda} \lambda x^{\lambda-1}+x a_{\lambda} x^{\lambda}\right]=0 \tag{22}
\end{align*}
$$

Now $x x^{\lambda-2}=x^{\lambda-1}$ and $x x^{\lambda}=x^{\lambda+1}$ So(22)becomes:

$$
\begin{equation*}
\sum_{\lambda}\left[\lambda^{2} a_{\lambda} x^{\lambda-1}+a_{\lambda} x^{2+1}\right]=0 \tag{23}
\end{equation*}
$$

Now we must be able to get a recursion relation for the coefficients, otherwise the trial solution is wrong! Expand the summation starting $\lambda=0$

$$
\begin{aligned}
& a_{0} \cdot 0^{2} \cdot x^{-1}+a_{0} x+a_{1}+a_{1} x^{2}+a_{2} 2^{2} x+a_{3} x^{3}+a_{3} 3^{2} x^{2} \\
& +a_{3} x^{4}+\cdots=0 \\
& \text { or } \quad a_{1}+\left(a_{0}+a_{2} 2^{2}\right) x+\left(a_{1}+a_{3} 3^{2}\right) x^{2}+\cdots=0
\end{aligned}
$$

Hence $a_{1}=0 \quad\left(a_{0}+4 a_{2}\right)=0 \quad a_{1}+9 a_{3}=0$ etc

That is

$$
a_{\lambda}+a_{\lambda+2}(\lambda+2)^{2}=0
$$

or

$$
a_{\lambda+2}=-a_{\lambda} /(\lambda+2)^{2}
$$

$$
(26)
$$

This is the recursion relation. Furthermore, when

$$
\lambda=1
$$

$$
\begin{aligned}
& a_{3}=-a_{1} /\left(3^{2}\right)=-0 / 4 \\
& a_{3}=0
\end{aligned}
$$

Hence, since $a_{1}=0$, the recursion relation propagates the value of a_{1} to all the odd coefficients.
we then have

$$
R=a_{0}\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} 4^{2}}-\frac{x^{6}}{2^{2} 4^{2} 6^{2}}+\cdots\right] \text { (27) }
$$

The quantity in the square bracket is called $J_{0}(x)$, a Bessel function for $\nu=0$ in (18). This is a particular solution to Bessel's equation.
Another solution, which we shall not derive, is $Y_{0}(x)$. A complete volution is

$$
\begin{equation*}
R(x)=A J_{0}(x)+B Y_{0}(x) \tag{28}
\end{equation*}
$$

Where $Y_{0}(x)=J_{0}(x) \ln x+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\cdots \quad$ (29)
$Y_{0}(x)$ blows up at $x=0$ and therefore $B=0$ for problems where $x=0$ in problem at hand.

For $x \gg 1 \quad J_{0}(x) \simeq \frac{1}{x} \cos x$

$$
\begin{equation*}
J(x) \simeq \frac{1}{x} \sin x \tag{30}
\end{equation*}
$$

J_{0} has mots at $x=2.40,5.52,8.65,11.79,14.93 \ldots$ and for $J_{1} \quad x=0.0,3.83,7.02,10.17,13.32 \ldots$

Like the Fourier functions, the Bessel functions may be used to approximate a function over an interval $\rho=0$ to $\rho=a$, where $x=k \rho$

At $p=a$, let $J_{0}(x)=J_{0}(k p)=J_{0}(k a)=0$
That is, the function is 1 at $x=0$ and 0 at $x=$ ka Different values of k will correspond to different solutions of $\nabla^{2} \Phi=0$, for $\nu=0$.
Each value of k corresponds to a different rod of J_{0} and if J_{0} is periodic over the interval $\rho=0$ to $\rho=a$, then

$$
\begin{array}{rll}
k_{1} a=2.40 & k_{1}=2.40 / a \\
k_{2} a=5.52 & k_{2}=5.52 / a \\
k_{3} a=8.65 & k_{3}=8.65 / a \\
\text { etc. } &
\end{array}
$$

That is $k_{i}=\alpha_{n} / a$, where α_{n} is the eth root of $J_{v}(x)$. Then we have:

Hence, these J_{0} functions can be used to approximate a function like $v(x)$ over the interval $0 \rightarrow a$.

$$
V(x)=\sum_{n=0}^{\infty} A_{n} J_{0}\left(k_{i} \rho\right)=\sum_{n=0}^{\infty} A_{n} J_{c}\left(\frac{\alpha_{n}}{\alpha} \rho\right) \quad(s z)
$$

where $k_{i}=\alpha_{n} / a$
Orthogonalization: To make the set of $J_{0}(x)$ orthogonal, a weighting factor ρ is needed. Then

$$
\int_{0}^{a} p J_{0}(x) V(x) d \rho=\int_{0}^{a} \sum A_{n} p J_{0}\left(x_{1}\right) J_{0}\left(x_{j}\right) d p \quad(33)
$$

where $x_{i}=k_{i \rho}$ and $x_{j}=k_{j p}$
On the right side of (33):

$$
A_{n}\left\{\int_{a}^{a} \rho J_{0}^{2}\left(\frac{\alpha_{n}}{a} \rho\right) d \rho\right\}=\left\{\begin{array}{cc}
0 & i \neq j \tag{34}\\
\frac{a^{2}}{2} & A_{n} \\
J_{1}^{2}\left(\alpha_{n}\right) & i=j
\end{array}\right.
$$

Then equating left and right sides of (33):

$$
\begin{equation*}
A_{n}=\frac{\int_{0}^{a} V(x) \rho J_{0}\left(\frac{\alpha_{n}}{a} \rho\right) d \rho}{\frac{a^{2}}{2} J_{1}^{2}\left(\alpha_{n}\right)} \tag{35}
\end{equation*}
$$

The following relations are needed to find the values of A_{n} :

$$
\begin{align*}
& \int J_{1}(x) d x=-J_{0}(x) \tag{36}\\
& \frac{d}{d x}\left[x J_{1}(x)\right]=x J_{0}(x) \tag{37}\\
& \int x J_{0}(x) d x=x J_{1}(x) \text { values of } \int J_{0}(x) d x \text { are } \tag{38}
\end{align*}
$$

found tabulated

$$
\begin{equation*}
\int x^{2} J_{0}^{2} d x=\frac{1}{2} x^{2}\left(J_{0}^{2}+J_{1}^{2}\right) \tag{39}
\end{equation*}
$$

$$
\begin{aligned}
\int x J_{1}^{2}(x) d x= & \frac{1}{2}\left(J_{0}^{2}+J_{1}^{2}\right)-x J_{0} J_{1} \\
I_{n 0}=\int x^{n} J_{0}(x) d x= & x^{n} J_{1}(x)+(n-1) x^{n-1} J_{0}(x) \\
& -(n-1)^{2} I_{n-2}, 0
\end{aligned}
$$

Expand $1-x^{2}$ in terms of $J_{u}\left(k_{n} x\right)$ over $0<x<a$

$$
1-x^{2}=\sum_{n=1}^{\infty} A_{n} J_{0}\left(\frac{\alpha_{n}}{a} x\right)
$$

Where the α_{n} 's are the zeros of $J_{0}(x)$.

$$
\begin{aligned}
& A_{n}=\frac{2}{a^{2} J_{1}^{2}\left(\alpha_{n}\right)} \int_{0}^{a}\left(1-x^{2}\right) x J_{0}\left(k_{n} x\right) d x=\frac{2}{a^{2} J_{1}^{2}\left(\alpha_{n}\right)}\left[\int_{0}^{a} x J_{0}\left(k_{n} x\right) d x-\int_{0}^{a} x^{3} J_{0}\left(k_{n} x\right) d x\right] \\
& d u=k_{n} d x
\end{aligned}
$$

change variables: let $k_{n} x=u \quad d u=k_{n} d x$
Then

$$
A_{n}=\frac{2}{a^{2} J_{1}^{2}\left(\alpha_{n}\right)}\left[\frac{1}{k_{n}^{2}} \int u J_{0}(u) d u-\frac{1}{k_{n}^{4}} \int u^{3} J_{0}(u) d u\right]
$$

Use relation below to get:

$$
\begin{aligned}
& k_{n}=\alpha_{n} / a \\
& A_{n}=\frac{2}{a^{2} J_{1}^{2}}\left[\frac{a^{2}}{\alpha_{n}^{2}}\left(\frac{\alpha_{n}}{a}\right) x J_{1}\left(\frac{\alpha_{n}}{a} x\right)-\frac{a^{4}}{\alpha_{n}^{4}}\left[\frac{\alpha_{n}}{a} x\left(\frac{\alpha_{n}^{2}}{a^{2}} x^{2}-4\right)\right] J_{1}\left(\frac{\alpha_{n}}{a} x\right)-2\left(\frac{\alpha_{n}}{a}\right)^{2} x^{2} J_{0}\left(\frac{\alpha_{n}}{a} x\right)\right]_{0}^{a} \\
& \text { at } x=a \text { minus } x=0 \text { we have: }
\end{aligned}
$$

Now $J_{0}\left(\alpha_{n}\right)=0$, so at $x=a$ minus $x=0$ we have:

$$
\begin{aligned}
& A_{n}=\frac{2}{a^{2} J_{1}^{2}}\left[\frac{a^{2}}{\alpha_{n}} J_{1}\left(\alpha_{n}\right)-\left[\frac{a^{4}}{\alpha_{n}}-\frac{4 a^{4}}{\alpha_{n}^{3}}\right] J_{1}\left(\alpha_{n}\right)-0-0\right. \\
& A_{n}=\frac{2}{J_{1}}\left[\frac{1}{\alpha_{n}}-\frac{1}{\alpha_{n}}\left(a^{2}-\frac{4 a^{2}}{\alpha_{n}^{2}}\right)\right]=\frac{2}{\alpha_{n} J_{1}}\left[1-a^{2}\left(1-\frac{4}{\alpha_{n}^{2}}\right)\right] \\
& A_{n}=\frac{2}{\alpha_{n}^{3} J_{1}}\left[\alpha_{n}^{2}\left(1-a^{2}\right)+4\right]
\end{aligned}
$$

For $a=1$, write out the $1 s t 3$ terms. of $1-x^{2}=\sum A_{n} J_{0}$

$$
\begin{array}{lll}
J_{1}\left(\alpha_{1}\right)=0.52 & J_{1}\left(\alpha_{2}\right)=-0.34 & J_{1}\left(\alpha_{3}\right)=0.27 \\
\int x^{n} J_{0}(x) d x= & x^{n} J_{1}(x)+(n-1) x^{n-1} J_{0}(x)-(n-1)^{2} \int x^{n-2} J_{0}(x) d x
\end{array}
$$

Moment of Inertia Tensor:
Angular momentum $\quad \mathbb{L}=I a$
I is the moment of inertia and, ingeneral, is a second rank tensor. In some cases, I is just a scalar. consider N particles making up a rigid body. Then

$$
\begin{equation*}
\mathbb{L}=\sum_{i=1}^{N} \mathbb{N}_{i} \times \mathbb{P}_{i}=\sum_{i}^{N} m_{i}\left(\mathbb{N}_{i} \times \mathbb{V}_{i}\right) \tag{z}
\end{equation*}
$$

If the particles make up a rigid body rotating a round a fixed axis with angular velocity ow, then

$$
\begin{equation*}
v_{i}=\omega \times \mathbb{H}_{i} \tag{3}
\end{equation*}
$$

Hence (2) becomes

$$
\begin{equation*}
\mathbb{Z}=\sum_{i=1}^{N} m_{i} \mathbb{E}_{i} \times\left(\boldsymbol{\omega} \times \mathbb{F}_{i}\right) \tag{4}
\end{equation*}
$$

Now $A \times(\mathbb{B} \times C)=\mathbb{B}(\mathbb{A} \cdot C)-\mathbb{C}(\mathbb{A} \cdot \mathbb{B})$
Then (4) becomes:

$$
\begin{align*}
\mathbb{L} & =\sum_{i}^{N} m_{i}\left[\omega\left(\mathbb{V}_{i} \cdot \mathbb{F}_{i}\right)-\mathbb{F}_{i}\left(\omega \cdot \mathscr{F}_{i}\right)\right] \tag{6}\\
& =\sum_{i}^{N} m_{i}\left[r_{i}^{2} \omega-\mathbb{r}_{i}\left(\omega \cdot \sigma_{i}\right)\right] \tag{7}
\end{align*}
$$

Now consider L_{x} :

$$
\begin{equation*}
L_{x}=\sum_{i}^{N} m_{i}\left[r_{i}^{2} \omega_{x}-x_{i}\left(\omega_{x} x_{i}+\omega_{y} y_{i}+\omega_{z} z_{i}\right)\right] \tag{181}
\end{equation*}
$$

Now $r_{i}^{2} \omega_{x}=\left(x_{i}^{2}+y_{j}^{2}+y_{k}^{2}\right) \omega_{x}=\left(y_{i}^{2}+z_{i}^{2}\right) \omega_{x}+x_{i}^{2} \omega_{x}$
and

$$
\begin{equation*}
L_{x}=\sum_{i}^{N} m_{i}\left[\left(y_{i}^{2}+z_{i}^{2}\right) \omega_{x}-x_{i} y_{i} \omega_{y}-x_{i} z_{i} \omega_{z}\right] \tag{9}
\end{equation*}
$$

Let $I_{x x}=\sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \quad I_{x y}=-\sum_{i} m_{i} x_{i} y_{i} \quad(1,12)$
and $I_{x z}=-\sum_{i} m_{i} x_{i} z_{i}$
Then

$$
\begin{equation*}
L_{x}=I_{x x} \omega_{x}+I_{x y} \omega_{y}+I_{x z} \omega_{z} \tag{13}
\end{equation*}
$$

Now consider L_{y} :

$$
L_{y}=\sum_{i} m_{i}\left[r_{i}^{2} \omega_{y}-y_{i}\left(\omega_{x} x_{i}\left(\omega_{y} y_{y}\right)+\omega_{z} g_{i}\right)\right]
$$

Again $r_{i}^{2} \omega_{y}=x_{i}^{2} \omega_{y}+y_{i}^{2} \omega_{y}+z_{i}^{2} \omega_{y}=\left(x_{i}^{2}+z_{i}^{2}\right) \omega_{y}+y_{i}^{2} \omega_{y}$ (16)
So

$$
\begin{equation*}
L_{y}=\sum_{i} m_{i}\left[\left(x_{i}^{2}+z_{i}^{2}\right) \omega_{y}-x_{i} y_{i} \omega_{x}-\omega_{z} y_{i}, z_{i}\right] \tag{17}
\end{equation*}
$$

Let $I_{y y}=\sum_{i} m_{i}\left(x_{i}{ }^{2}+\partial_{i}^{2}\right), I_{y x}=-\sum_{i} m_{i} x_{i} y_{i}, \& I_{y z}=-\sum_{i} m_{i} y_{i} z_{i}$
Then

$$
L_{y}=I_{y y} \omega_{y}+I_{y x} w_{x}+I_{y z} \omega_{z}
$$

similarly for L_{z}
In general $\quad I_{h j}=\sum_{i} m_{i}\left(r_{i}^{2} \delta_{h j}-k_{i} j_{i}\right) \quad k, j=x, y o r z(2 c)$
Kronecker delta: $\quad \delta_{j} \geq 1 \begin{aligned} & k=j \\ & k \neq j\end{aligned}$
For a continuous body

$$
\begin{equation*}
I_{k j}=\int \rho(\mathbb{r})\left(r^{2} \delta_{k j}-x_{k} x_{j}\right) d^{3} x \tag{21}
\end{equation*}
$$

k,j=1,2, 3.
But now $x_{1}=x, x_{2}=y, \& x_{3}=z$. Example
$k=1 \& j=1$. Then

$$
\begin{align*}
& j=1 \text {. Then } \tag{22}\\
& I_{11}=I_{x x}=\int \rho(a)\left(r^{2} \delta_{11}-x_{1} x_{1}\right) d^{3} x
\end{align*}
$$

So

$$
\begin{align*}
& I_{x x}=\int \rho(t)\left(r^{2} \delta_{11}-x x\right) d^{3} x \tag{23}\\
& I_{x x}=\int \rho(t)\left(x^{2}+y^{2}+z^{2}-x^{2}\right) d^{3} x \tag{24}\\
& I_{x x}=\int p(t)\left(y^{2}+z^{2}\right) d^{3} x \tag{25}
\end{align*}
$$

Compare with (11) $I_{x x}=\sum_{i} m_{i}\left(y_{c}^{2}+z_{t}^{2}\right)$
Now (14), (19) \& L_{z} may be written as set of rows found from

$$
\left(\begin{array}{l}
L_{x} \tag{26}\\
L_{y} \\
L_{y}
\end{array}\right)=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

$I_{x x}, I_{y y} \& I_{z z}$ are the moments of inertia around the $x, y, \& z$ ares respectively. The off diagonal elements are called "products of inertia." would be greatly simplified, if I were diagonal Then

$$
\left(\begin{array}{l}
L_{x}^{\prime} \tag{27}\\
L_{\dot{y}}^{\prime} \\
L_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
I_{x^{\prime}} & 0 & 0 \\
0 & I_{y^{\prime}} & 0 \\
0 & 0 & I_{z^{\prime}}
\end{array}\right)\left(\begin{array}{l}
\omega_{x}^{\prime} \\
\omega_{y^{\prime}}^{\prime} \\
\omega_{z^{\prime}}
\end{array}\right)
$$

Then the diagonal elements are called the "principle moments of inertia." They are the eigenvalues of I. As an example, consider the planar object below
 The integral in (22) becomes a surface integral and $\rho=\sigma$ where $\sigma=M / 4 a^{2}$ Then

$$
I_{k j}=\frac{M}{4 a^{2}} \int\left(r^{2} \delta_{k j}-x_{k j} x_{j}\right) d \sigma
$$ with $r^{2}=x^{2}+y^{2}$

For example, with $j=k=1$

$$
\begin{align*}
& \text { ample, with } j=k=1 \tag{29}\\
& I_{x x}=\frac{4 M}{4 a^{2}} \int_{0}^{a} \int_{0}^{a}\left(r^{2}-x^{2}\right) d x d y=\frac{M}{a^{2}} \int_{0}^{a} \int_{0}^{a} y^{2} d x d y \tag{30}\\
& I_{x y}=\frac{M}{a^{2}}(a) \frac{a^{3}}{3}=\frac{1}{3} M a^{2}
\end{align*}
$$

and

$$
\begin{equation*}
I_{x y}=\frac{4 M}{4 a^{2}} \int_{x=0}^{a} \int_{y=0}^{a}(-x y) d x d y=-\frac{1}{4} M a^{2} \tag{31}
\end{equation*}
$$

and $I_{x z}=0$ since $z=0$ (planar objects)
Similarly

$$
\begin{aligned}
& z=0 \quad \text { since } \\
& I_{y y}=\frac{M}{a^{2}} \int_{x=0}^{a} \int_{y=0}^{a}\left(r^{2}-y^{2}\right) d x d y=\frac{M}{a^{2}} \iint x^{2} d x d y \\
& I_{y y}=\frac{1}{3} M a^{2}
\end{aligned}
$$

and

$$
I_{y x}=\frac{M}{a^{2}} \int_{0}^{a} \int_{0}^{a}(-x y) d x d y=-\frac{1}{4} M a^{2}
$$

$$
I_{y z}=0
$$

$$
\begin{aligned}
& I_{y z}=0 \\
& I_{z z}=\frac{M}{a^{2}} \int_{0}^{a} \int_{0}^{a}\left(x^{2}+y^{2}-z^{=0}\right) d x d y=\frac{M}{a^{2}} \int_{0}^{a} \int_{0}^{a} x^{2} d x d y+y^{2} d x d y \\
& I_{z z}=\frac{M}{a^{2}}\left[\left(\frac{1}{3} a^{4}+\frac{1}{3} a^{4}\right)\right]=\frac{2}{3} M a^{2} \\
& I_{z x}=I_{z y}=0
\end{aligned}
$$

Hen

$$
I=M a^{2}\left(\begin{array}{ccc}
\frac{1}{3} & -\frac{1}{4} & 0 \\
-1 / 4 & y_{3} & 0 \\
0 & 0 & 2 / 3
\end{array}\right)=\frac{M a^{2}}{12}\left(\begin{array}{ccc}
4 & -3 & 0 \\
-3 & 4 & 0 \\
0 & 0 & 8
\end{array}\right)
$$

